Lecture 26

Multitape TM

Multitape TM

- TM with more than one tape.
- Each tape has its own tape head.
- Each tape is independent.

2-Tape Turing Machine

- a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where
 - the set of states Q is finite, and does not contain the halt state
 h,
 - o the input alphabet Σ is a finite set of symbols, not including the blank symbol Δ ,
 - o the tape alphabet Γ is a finite set of symbols containing Σ , but not including the blank symbol Δ ,
 - o the start state s is in Q, and
 - o the transition function δ is a partial function from $Q \times (\Gamma \cup \{\Delta\})^2 \to Q \cup \{h\} \times (\Gamma \cup \{\Delta\})^2 \times \{L, R, S\}^2$.

Example of 2-Tape Turing Machine

Equivalence of 2-tape TM and single-tape TM

Theorem:

For any 2-tape TM T, there exists a single-tape TM M such that for any string α in Σ^* :

- o if T halts on α with β on its tape, then M halts on α with β on its tape, and
- o if *T* does not halt on α , then *M* does not halt on α .

How 1-tape TM simulates 2-tape TM

- Marking the position of each tape head in the content of the tape
- Encode content of 2 tapes on 1 tape
 - When to convert 1-tape symbol into 2-tape symbol

cannot be done all at once because the tape is infinite

- Construct 1-tape TM simulating a transition in 2tape TM
- Convert the encoding of 2-tape symbols back to 1tape symbols

Encoding 2 tapes in 1 tape

New alphabet contains:

- o old alphabet
- o encoding of a symbol on tape 1 and a symbol on tape 2
- encoding of a symbol on tape 1 pointed by its tape head and a symbol on tape 2
- encoding of a symbol on tape 1 and a symbol on tape 2 pointed by its tape head
- encoding of a symbol on tape 1 pointed by its tape head and a symbol on tape 2 pointed by its tape head

How the tape content is changed

Tape format

Simulating transitions in 2-tape TM in 1-tape TM

Equivalence of 2-tape TM and single-tape TM

Proof:

Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be a 2-tape TM.

We construct a 1-tape TM $M=(K, \Sigma, \Gamma', \delta', s')$ such that

 $\Gamma' = \Gamma \cup \{c(a,b) | a,b \text{ are in } \Gamma \cup \{\Delta\}\} \cup \{c(\underline{a},b) | a,b \text{ are in } \Gamma \cup \{\Delta\}\} \cup \{c(\underline{a},\underline{b}) | a,b \text{ are in } \Gamma \cup \{\Delta\}\} \cup \{c(\underline{a},\underline{b}) | a,b \text{ are in } \Gamma \cup \{\Delta\}\} \cup \{\#\}$

We need to prove that:

- o if T halts on α with output β , then M halts on α with output β , and
- o if T does not halt on α , then M does not halt on α

if T does not halt on α

- If T loops, then M loops.
- If T hangs in a state p, M hangs somewhere from p to the next state.