

Lecture 26

Multitape TM

Multitape TM

- TM with more than one tape.
- Each tape has its own tape head.
- Each tape is independent.

2-Tape Turing Machine

- a quintuple ($Q, \Sigma, \Gamma, \delta, s$), where

- the set of states Q is finite, and does not contain the halt state h,
- the input alphabet Σ is a finite set of symbols, not including the blank symbol \triangle,
- the tape alphabet Γ is a finite set of symbols containing Σ, but not including the blank symbol \triangle,
\circ the start state s is in Q, and
- the transition function δ is a partial function from $(\Gamma \cup\{\Delta\})^{2} \rightarrow Q \cup\{h\} \times(\Gamma \cup\{\Delta\})^{2} \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}^{2}$.

Example of 2-Tape Turing Machine

Equivalence of 2-tape TM and single-tape TM

Theorem:

For any 2-tape TM T, there exists a singletape TM M such that for any string α in Σ^{*} :

- if T halts on α with β on its tape, then M halts on α with β on its tape, and
- if T does not halt on α, then M does not halt on α.

How 1-tape TM simulates 2-tape TM

- Marking the position of each tape head in the content of the tape
- Encode content of 2 tapes on 1 tape
- When to convert 1-tape symbol into 2-tape symbol
cannot be done all at once because the tape is infinite
- Construct 1-tape TM simulating a transition in 2tape TM
- Convert the encoding of 2-tape symbols back to 1tape symbols

Encoding 2 tapes in 1 tape

- New alphabet contains:
- old alphabet
- encoding of a symbol on tape 1 and a symbol on tape 2
- encoding of a symbol on tape 1 pointed by its tape head and a symbol on tape 2
- encoding of a symbol on tape 1 and a symbol on tape 2 pointed by its tape head
- encoding of a symbol on tape 1 pointed by its tape head and a symbol on tape 2 pointed by its tape head

How the tape content is changed

Tape format

What's read on tape 1 and 2

Simulating transitions in 2-tape TM in 1-tape TM

$$
\text { (p) } \mathrm{a}_{1}, \mathrm{a}_{2} /\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right),\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \longrightarrow \text { (}
$$

T_tape1(o,1,d)

Update the first cell

Convert 1-tape symbol

 into 2-tape symbol
$\mathrm{T}_{\text {cleanup }}$

$\mathrm{T}_{\text {encode }}$

Equivalence of 2-tape TM and single-tape TM

Proof:

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a 2-tape TM.
We construct a 1-tape TM $M=\left(K, \Sigma, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}\right)$ such that

- $\Gamma^{\prime}=\Gamma \cup\{c(a, b) \mid a, b$ are in $\Gamma \cup\{\Delta\}\} \cup\{c(\underline{a}, b) \mid a, b$ are in $\Gamma \cup\{\Delta\}\} \cup\{c(a, \underline{b}) \mid a, b$ are in $\Gamma \cup\{\Delta\}\} \cup\{c(a, \underline{b}) \mid a, b$ are in $\Gamma \cup\{\Delta\}\} \cup\{\#\}$
We need to prove that:
- if T halts on α with output β, then M halts on α with output β, and
- if T does not halt on α, then M does not halt on α

if T does not halt on α

- If T loops, then M loops.
- If T hangs in a state p, M hangs somewhere from p to the next state.

